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Epigenetic mechanisms have been associated with genes involved in Posttraumatic
stress disorder (PTSD). PTSD often co-occurs with other health conditions such as
depression, cardiovascular disorder and respiratory illnesses. PTSD and migraine have
previously been reported to be symptomatically positively correlated with each other, but
little is known about the genes involved. The aim of this study was to understand the
comorbidity between PTSD and migraine using a monozygotic twin disease discordant
study design in six pairs of monozygotic twins discordant for PTSD and 15 pairs of
monozygotic twins discordant for migraine. DNA from peripheral blood was run on
Illumina EPIC arrays and analyzed. Multiple testing correction was performed using
the Bonferroni method and 10% false discovery rate (FDR). We validated 11 candidate
genes previously associated with PTSD including DOCK2, DICER1, and ADCYAP1. In
the epigenome-wide scan, seven novel CpGs were significantly associated with PTSD
within/near IL37, WNT3, ADNP2, HTT, SLFN11, and NQO2, with all CpGs except the
IL37 CpG hypermethylated in PTSD. These results were significantly enriched for genes
whose DNA methylation was previously associated with migraine (p-value = 0.036).
At 10% FDR, 132 CpGs in 99 genes associated with PTSD were also associated
with migraine in the migraine twin samples. Genes associated with PTSD were
overrepresented in vascular smooth muscle, axon guidance and oxytocin signaling
pathways, while genes associated with both PTSD and migraine were enriched for
AMPK signaling and longevity regulating pathways. In conclusion, these results suggest
that common genes and pathways are likely involved in PTSD and migraine, explaining
at least in part the co-morbidity between the two disorders.
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INTRODUCTION

Post-traumatic stress disorder (PTSD) is a debilitating, stress-
related psychiatric condition, which occurs among persons
exposed to traumatic events involving life threats, serious
injury, or death (Matosin et al., 2017). It develops as a
result of failure to contain the normal stress response hence
dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis
which is one of the body’s major stress response systems
(Wong, 2002; Yehuda and LeDoux, 2007). Although nearly
90% of individuals are exposed to a traumatic event during
their lifetime (Breslau et al., 1998), only a small proportion
go on to develop PTSD (Matosin et al., 2017). There is
significant variation in the risk of PTSD among individuals
experiencing the same trauma; this is likely determined by
genetic predisposition and epigenetic mechanisms (Kessler et al.,
2017). One of the best understood epigenetic mechanisms is
DNA methylation through the addition of a methyl chemical
bond to the cytosine C5 in the cytosine-phosphate-guanine
(CpG) dinucleotides of the DNA, influencing gene activity and
considered to be a stable epigenetic mark in post-mitotic cells
(Guo et al., 2011). Generally, DNA methylation, especially if
occurring close to the promoter region of the gene is known to
inhibit gene transcription.

Epigenome-wide Association Studies (EWAS) provide an
unbiased approach to identify DNA methylation loci associated
with a disease independently of what is known about the
pathophysiology (Almli et al., 2014). Most EWAS examining
epigenetic effects of trauma exposure use DNA methylation
profiles in peripheral tissues like blood and saliva, which are
useful for biomarker identification (Almli et al., 2014). Several
genes previously associated with stress or epigenetic regulation
of neuronal function have been identified through EWAS
of PTSD (Melroy-Greif et al., 2017; Nievergelt et al., 2018;
Howie et al., 2019). Additionally, multiple genome-wide studies
have also uncovered genetic contributions to PTSD risk and
symptomatology through candidate genes which have encoded
for varied proteins (Gormley et al., 2016; Kilaru et al., 2016;
Blacker et al., 2019). EWAS show that there are significant
epigenetic differences between individuals with PTSD compared
to healthy controls (Uddin et al., 2010; Smith et al., 2011),
particularly in genes involved in inflammation, immune and
nervous system function (Uddin et al., 2010; Smith et al., 2011;
Rusiecki et al., 2012). Psychosocial stress may alter global and
gene-specific DNA methylation patterns potentially associated
with peripheral immune dysregulation (Uddin et al., 2010; Smith
et al., 2011; Rusiecki et al., 2012).

A larger number of studies have investigated DNA
methylation of specific candidate genes, including genes
involved in the regulation of the HPA axis (Almli et al.,
2014). Epigenetic DNA methylation changes may accompany
lifetime experiences and alter gene expression profiles (Yehuda
et al., 2015). Significant methylation changes in early life,
specifically in genes implicated in developing severe psychiatric
conditions including DLG4, DRD2, NOS1, NRXN1, and
SOX10 also indicate vulnerability to the effects of stress and
psychiatric disorders via epigenetic mechanisms (Numata

et al., 2012). Large longitudinal twin and molecular genetic
cohort studies suggest that the impact of adverse life events
is probably moderated by genetic variants through genetic
and environmental interactions (Meaney and Szyf, 2005;
Probst et al., 2009).

Post-traumatic stress disorder is associated with the
occurrence of multiple comorbidities including depression
and coronary heart disease which have been well studied
(Sareen, 2014). PTSD is also highly comorbid with chronic pain
conditions that often co-occur such as migraine headaches,
tension headaches, temporomandibular disorder, irritable bowel
syndrome, fibromyalgia, chronic fatigue syndrome and chronic
prostatitis/chronic pelvic pain syndrome (Gasperi et al., 2021).
Patients with PTSD have a risk of developing pain disorders,
which may produce long-lasting changes in the threshold
for migraine attacks by inducing epigenetic modifications
throughout the brain (Eising et al., 2013). Although several
epidemiological studies have reported that PTSD is a predictor of
migraine and is much more prevalent in patients with migraine
than in the general population (Peterlin et al., 2008; Smitherman
et al., 2009; Minen et al., 2016; Zarei et al., 2016), migraine is an
understudied comorbidity of PTSD.

Migraine may be aggravated by stress, exercise, sleep
deficiency, hormonal changes, head traumas, major depression,
PTSD and environmental cues (Theeler et al., 2012; Guglielmetti
et al., 2020). In addition, migraine-related pain may cause
sensitisation of certain pain pathways via inflammation-induced
changes in epigenetic gene regulation (Eising et al., 2013).
A recent GWAS reported that migraine showed a higher genetic
correlation with psychiatric disorders when compared to other
neurological disorders, suggesting common genetic basis or
pathways (Anttila et al., 2018). Little is understood about the
link between PTSD and migraine disorders, however, it has been
suggested that several systems such as the immune system are
likely to be involved in the co-occurrence of these disorders
(Peterlin et al., 2011). Biological, environmental and genetic risk
factors may converge to produce a brain state which predisposes
an individual to both PTSD and migraine (Antonaci et al., 2011).
Causal pathways shared between migraine and its comorbid
disorders may be modulated by epigenetic mechanisms (Eising
et al., 2013); these have been suggested to play a role in
development of both disorders (McGowan, 2013).

It is important to understand the role genetic, environmental
and epigenetic factors play in determining an individual’s
susceptibility to PTSD and other co-occurring symptoms
(Blacker et al., 2019). In this study we used the disease-
discordant monozygotic (MZ) twin design to investigate PTSD-
migraine comorbidity. This is a powerful strategy in genetic and
epigenetic epidemiology as participants are genetically identical
and well-matched by age, sex, maternal environment, population
cohort effects and exposure to many shared environmental
factors. Recent studies have used this design and uncovered
considerable epigenetic (methylation) variation between MZ
twins for several complex phenotypic traits which are detectable
in blood DNA samples (Bell and Spector, 2011; Bolund et al.,
2017; Kaut et al., 2017; Gerring et al., 2018; Peng et al., 2018;
Gasperi et al., 2021).
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The study aimed to identify PTSD associated genes
overlapping with migraine and evaluate similarity in biological
pathways between these disorders. To the best of our knowledge
this is the first study to use the monozygotic twin design
to determine DNA methylation differences between twins
discordant for PTSD and migraine.

MATERIALS AND METHODS

Participants and Samples
The study was based on a subset of six pairs of monozygotic
(MZ) twins discordant for PTSD and 15 pairs of MZ twins
discordant for migraine that were part of a larger cohort of twins
recruited by the QIMR Berghofer Medical Research Institute
(Wright and Martin, 2004). All twins were of Caucasian descent.
Informed written consent was obtained from each participant.
All questions were administered using a computer-administered
telephone interview (for PTSD). In addition, respondents were
requested to complete a brief questionnaire either online
or in person which included questions on physical health,
personality and other measures (for PTSD and migraine studies).
Ethical clearance for this study was obtained through QIMR
Berghofer Medical Research Institute along with Queensland
University of Technology (QUT) Human Research Ethics
Committee approval.

Assessment of PTSD
The MZ twins discordant for PTSD were part of a larger
Missouri Alcoholism Research Center Project 7 (MARC7) study
investigating the effects of early experiences and alcohol use
in twins, siblings and their spouses in 2010–2013. e-Trauma
is a semi-structured interview, which capitalizes on prior
research in psychiatric epidemiology and is based on items
previously validated by other research interviews, including SCID
(Structured Clinical Interview for DSM Disorders) and DSM-
IV (Bell, 1994). All twins had experienced a PTSD-qualifying
potentially traumatic event as per the DSM-IV criteria. PTSD was
assessed via the DSM-IV criteria through structured interview
questions that were asked over the phone by an experienced
interviewer. PTSD diagnosis was based on the self-reported
DSM-IV criteria.

Assessment of Migraine
The MZ twins discordant for migraine were part of the 25-UP
(Mitchell et al., 2019) and Memory attention and problem solving
(MAPS) study (Wright and Martin, 2004) at QIMR. Migraine
were assessed using the International Headache Society (IHS)
diagnostic criteria (the International Classification of Headache
Disorders, ICHD-3) together with a diagnosis of migraine with
or without aura [Headache Classification Committee of the
International Headache Society (IHS), 2013]. For the collection
of detailed ICHD-3 diagnostic criteria, participants answering
“yes” to ever having “migraine or recurrent attacks of headache”
(screening positive), then answered a number of questions
relating to their symptoms. Diagnoses were determined for
the two major varieties of migraine: migraine without aura

and migraine with aura (Launer et al., 1999). MZ twins discordant
for migraine with aura were selected for the study.

DNA Methylation Microarray Analyses
Blood samples were collected from all participants. Purified DNA
was quantified on a Qubit Fluorometer (Thermo Fisher Scientific,
United States) and for each sample 500 ng was bisulphite-
converted using EZ DNA Methylation Kits (Zymo Research,
United States). The samples were then assayed for genome-wide
DNA methylation levels using Illumina EPIC DNA methylation
arrays that offer a high coverage of CpGs >850,000 CpG sites
at single-nucleotide resolution, covering all known genes (96%
Refseq genes). All procedures were performed according to
the manufacturer’s protocol, and arrays were scanned on an
Illumina HiScan (Illumina, United States) at the Genomics
Research Centre, QUT.

Statistical Analysis
Raw scan data from the Illumina EPIC arrays were exported
into R (V4.0.2) for statistical analysis. Samples with probe
detection call rates <95% and those with an average intensity
value of either <50% of the experiment-wide sample mean
or <2000 arbitrary units (AU) were excluded from further
analysis. The raw DNA methylation beta values were background
and control-normalized using the Bioconductor MINFI package
(1.4.0) (Aryee et al., 2014). Cell counts were analyzed using the
Houseman method (Houseman et al., 2012). All samples were run
in a single batch and were of Caucasian ethnicity. Epigenome-
wide differential methylation analysis between case and control
groups was performed using linear mixed effects models in R
(lmer) to account for the twin pairs and adjusting for cell-
counts, age and sex. To correct for multiple testing and identify
significant CpGs, we calculated a stringent Bonferroni threshold
for significance (P = 5.77 × 10−8) and a less stringent threshold
of 10% false discovery rate (FDR).

The power of a sample was determined using a traditional
power calculator based on 50 simulations and expected target
delta ranging from 0.20–0.50 at 5% FDR (Graw et al., 2019), with
a classical empirical power of 66 and 83% to detect differentially
methylated DNA methylation, respectively.

To test whether the overlap of genes between two analyses was
more than expected by chance, enrichment testing was performed
using 1,000 permutations (using random sets) and applying a
two-sided Binominal test in R to give a p-value of enrichment.

To assess the biological and molecular mechanisms in PTSD
and migraine, pathway and gene set analyses were performed
using the KEGG pathway analysis tool via the Webgestalt
interface (Wang et al., 2013) to identify enriched pathways using
a hypergeometric test for enrichment evaluation analysis and
significance level of 10% FDR.

RESULTS

Demographics
The study comprized of a total of 21 pairs of MZ twins (n = 42).
Of these, six pairs of MZ twins were discordant for PTSD while 15
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pairs of MZ twins were discordant for migraine. Of the six pairs
of MZ twins discordant for PTSD, five pairs were male while one
pair was female, with a mean age of 43.3 years [SD = 8.58] across
the pairs. Of these MZ twins, 10 of them were male while two
were female. Of the 15 pairs of MZ twins discordant for migraine,
seven pairs were male while eight pairs were female, with a mean
age of 23 years [SD = 9.95] across the pairs. Table 1 shows details
of the study participants.

PTSD Candidate Genes
We investigated 60 PTSD candidate genes that had
been previously reported to be associated with PTSD in
different studies (Cornelis et al., 2010; Almli et al., 2014;
Mehta et al., 2019; Bian et al., 2020; Stein et al., 2021),
including genes uncovered in a GWAS of over 250,000
participants in the Million Veteran Program (Stein et al.,
2021). For these 60 candidate genes, there were 4411 CpGs
detected in the current study on the EPIC microarray
that could be tested. We tested for association between
DNA methylation and PTSD status in the twin pairs using
linear mixed effects (lmer) models with age, sex and cell
counts as covariates.

Of the 4411 CpGs tested, 440 CpGs from 54 genes were
significantly associated with PTSD (p < 0.05). There were
14 genes with at least one CpG surviving the locus-specific
Bonferroni correction, including DOCK2, SLC6A3, DICER1,
DRD2, ADCYAP1, ADCYAP1R1, SKA2, OXTR, STMN1, SLC6A4,
DBH, ZNF626, TRAIP, TSNAIRE1, and IMMP2L. Details of the
top candidate genes including the number of CpGs significant
within each gene are shown in Table 2. Based on 1,000
permutations, this indicates significant overlap above what would
be expected by chance (enrichment p-value = 0.0098). Full results
are shown in Supplementary Table 1. Figure 1 illustrates DNA
methylation differences between PTSD and non-PTSD for three
of the top candidate genes.

Genome Wide Analysis for PTSD Status
and DNA Methylation
Next, we performed a hypothesis-free epigenome-wide
association analysis to test for DNA methylation differences
between the MZ twins discordant for PTSD across all 866K CpG
sites on the array. Association testing was performed using lmer

TABLE 1 | Demographics of the study participants including six pairs of MZ twins
discordant for PTSD and 15 pairs of MZ twins discordant for migraine.

Status Age; mean (SD) Sex; n

Male Female

PTSD (n = 6) 43.3 5 1

Control (n = 6) 43.3 5 1

Total 43.3 (±8.58) 10 2

Migraine (n = 15) 23.4 7 8

Control (n = 15) 22.6 7 8

Total 23 ± 9.95 14 16

models and adjusting for cell counts, age and sex in the model as
possible confounders.

A total of seven CpGs were significant at the Bonferroni level
of significance of p < 5.77 × 10−8 (Table 3). Full results across
all the CpG sites are shown in Figure 2 and Supplementary
Table 2, a total of 159 CpGs (115 genes) were significant at 5%
FDR. The strongest association was detected for chromosomes 1,
2, 4, 6, 17, and 18. The top CpGs were included IL37 cg26483669,
CSF1 cg26433527, ADNP2 cg06405715, WNT3 cg26575738,
NQO2 cg11037719, HTT cg11432275, and SLFN11 cg13341380
(Figure 3). The CpG in IL37 showed hypomethylation in the
PTSD twins while the other CpGs in CSF1, ADNP2, WNT3,
NQO2, HTT, and SLFN11 were hypermethylated in PTSD. As
DNA methylation signals across neighboring CpGs can be highly
correlated, we used a less conservative threshold of significance
(10% FDR) to identify other genes of interest in PTSD. This
included 1453 CpG sites in 1036 genes that were significant at
10% FDR. Several of these genes such as HDAC4 and NRG1
were known to be affected by a known drug (n = 84 genes,
clinically actionable∗∗) or had genomes that could be used
to build new drugs (n = 248 genes, druggable genomes∗) as
per the Drug Gene Interaction Database (Cotto et al., 2017;
Supplementary Table 2).

Overlapping Genes and Pathways in
PTSD and Migraine
Posttraumatic stress disorder often occurs with other
comorbidities, including migraine. As little is known about
the basis for this comorbidity, we aimed to assess the occurrence
of DNA methylation variation on PTSD candidate genes in
association with migraine. Using the same study design as the
PTSD sample, we investigated 15 pairs of MZ twins discordant
for migraine. We tested for association of methylation at genetic

TABLE 2 | PTSD Candidate genes with at least one CpG significant at gene-wise
Bonferroni threshold for significance.

Gene symbol Number of
CpGs tested

=1 CpG with
p 5 0.05 (No of
CpGs with
p 5 0.05)

Survive bonferroni

DOCK2 96 YES (6) YES

SLC6A3 81 YES (8) YES

DICER1 49 YES (5) YES

DRD2 41 YES (4) YES

ADCYAP1 40 YES (3) YES

STMN1 38 YES (1) YES

ADCYAP1R1 36 YES (6) YES

SLC6A4 31 YES (2) YES

SKA2 25 YES (4) YES

OXTR 22 YES (3) YES

DBH 18 YES (3) YES

ZNF626 9 YES (1) YES

TRAIP 22 YES (2) YES

TSNARE1 215 YES (27) YES

IMMP2L 96 YES (10) YES
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FIGURE 1 | Boxplots for significant PTSD candidate genes: Box plots of DNA methylation level beta-values at significant candidate genes for PTSD versus
non-PTSD (control) MZ twins that were significant at gene-wise Bonferroni correction. The mean DNA methylation is higher in PTSD than in controls for two of the
three CpGs for DICER and DOCK2, while ADCYAP1 has only one CpG with a higher mean DNA methylation in individuals with PTSD compared to control twins. The
remainder of the CpGs have a higher mean DNA methylation in controls than with PTSD.

TABLE 3 | List of CpG sites significantly associated with PTSD at Bonferroni threshold for significance (p < 5.77 × 10−8).

Cpg P-value Chromosome Basepaira Gene symbol (closest gene) CpG location to gene Direction PTSD

cg26483669 2.47E-10 2 113717037 IL37 Intergenic Downregulated

cg06405715 9.90E-09 18 77895056 ADNP2 Gene body Upregulated

cg26433527 8.45E-09 1 110370709 CSF1 Intergenic Upregulated

cg26575738 6.11E-09 17 44896168 WNT3 TSS200 Upregulated

cgl 1037719 4.72E-08 6 2999695 NQ02 TSS1500 Upregulated

cgl 1432275 3.46E-08 4 3239323 HTT Gene body Upregulated

cgl3341380 4.15E-08 17 33701529 SLFN11 TSS 1500 Upregulated

aPosition in Human GRCh37/hg19 Assembly. TSS, distance from transcription start site.

loci that overlap between PTSD and migraine using several
different analyses.

Known PTSD Candidate Genes Associated With
Migraine in the MZ Twins
First, we tested 2,569 CpGs for the 60 PTSD candidate
genes identified from earlier studies among the twins
with migraine. There were 368 CpGs across 51 genes
that had at least one significant CpG associated with
migraine (P < 0.05). Of these genes, 11 genes survived
locus specific Bonferroni corrections for multiple testing

including ADCYAP1, AIM2, CRHR1, DBH, DOCK2, FKBP5,
HTR3A, OXTR, RORA, WWC1, and TSNAIRE1 (Table 4 and
Supplementary Table 3).

Epigenome-Wide Overlap of Genes Associated With
PTSD Also Associated With Migraine in the MZ Twins
At the epigenome-wide level, we assessed how many of the
1036 genes (1,453 CpGs) associated with PTSD at 5 and 10%
FDR overlapped with those significantly associated with migraine
in the discordant migraine MZ twins. At 5% FDR, DNA
methylation of 13 CpGs (six genes) and at 10% FDR DNA
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FIGURE 2 | Manhattan plot of CpGs associated with PTSD: the blue line
indicates Bonferroni threshold of significance (<5.77 × 10-8) and the red line
indicates 10% FDR. A total of 7 CpGs were significant at Bonferroni threshold
and 1,585 CpGs were significant at 10% FDR.

methylation of 99 genes (132 CpGs loci) associated with PTSD
was also associated with migraine (p < 0.05, Figure 4). At
10% FDR, 47 CpGs were down-regulated (hypo-methylated) in
PTSD of which 25 were also downregulated in migraine while
85 CpGs were up-regulated (hypermethylated) in PTSD of which
53 were also up-regulated in migraine (Supplementary Table 4).
The overlapping genes included RERE, MEG8, SPOPL, C1orf187
(DRAXIN), DAPK2, and TM6SF2 (Figure 5).

Genes Previously Associated With Migraine DNA
Methylation
To the best of our knowledge there has only been one study so far
investigating comprehensive epigenome-wide DNA methylation
changes in migraine performed by Gerring et al., 2018. The
study had identified a total of 62 genes associated with migraine
(Gerring et al., 2018). Using these genes (62 genes across 2,351
CpGs) we tested how many CpGs within these genes were also
associated with migraine and PTSD using the MZ twin sample.

In the migraine MZ twins, for 46 genes out of 62, there was at
least one CpG (p < 0.05) significantly associated with migraine in
the current study. Of these, for 6 genes (KCNG2, DGKG, SND1,
LHX6, ADIRF, and RPTOR), the results survived multiple testing
correction at 10% FDR.

In the PTSD MZ twins, we identified that 216 out of
2351 tested CpGs (4 genes i.e., RPTOR, NUFIP1, SLC38A4,
and KCP) were also significantly associated with PTSD (10%
FDR) in the current study. Based on 1000 permutations, this
overlap is significantly higher than expected by chance alone
(enrichment p-value = 0.036), providing support for overlapping
genes between migraine and PTSD.

Functional Annotation of Overlapping Genes
Pathway analysis was performed to determine the biological and
molecular function associated with PTSD only and both migraine
and PTSD using the KEGG pathway through an online interface
(Liao et al., 2019). For genes associated only with PTSD, vascular

FIGURE 3 | Box plots of most significant genes: boxplots of genes significantly associated with PTSD (p-value < 5.77 × 10-8) in the MZ twins is depicted. The
mean DNA methylation is higher in PTSD than in controls for all the genome wide significant genes except for the IL37 locus probe.
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TABLE 4 | PTSD Candidate genes also associated with migraine in MZ twins with
at least one Bonferroni significant CpG site.

Gene symbol Number of
CpGs
tested

=1 CpG with
p 5 0.05 (No of
CpGs)

Survive bonferroni

ADCYAP1 40 YES (4) YES

AIM2 16 YES (1) YES

CRHR1 70 YES (7) YES

DBH 18 YES (2) YES

DOCK2 96 YES (8) YES

FKBP5 53 YES (9) YES

HTR3A 20 YES (4) YES

OXTR 22 YES (3) YES

RORA 238 YES (21) YES

WWC1 77 YES (5) YES

TSNARE1 215 YES (13) YES

smooth muscle, axon guidance and oxytocin signaling pathways
were overrepresented, all these are well-known pathways for
PTSD. For genes associated with both PTSD and migraine, the
overrepresented pathways were AMPK signaling (Enrichment
Ratio = 9.73, p-value = 1.40E-04) and longevity regulating
(Enrichment Ratio = 10.49; p-value = 5.25E-04). Detailed results
are shown in Table 5.

DISCUSSION

PTSD often co-occurs with other disorders and migraine being
one of the less-studied comorbidities of PTSD. In the current

FIGURE 4 | Overlap of PTSD and migraine: Venn diagram of CpGs and genes
significantly associated with PTSD (10% FDR) and also associated with
migraine (p < 0.05).

study, we analyzed epigenome-wide DNA methylation data in
MZ twins discordant for PTSD and migraine to identify common
genes and pathways in PTSD and migraine. DNA methylation
can be affected by both genetic and environmental factors.
Therefore, the MZ twin’s disease-discordant design is a powerful
approach to dissect overlap between disorders as the participants
are genetically and demographically matched (Bell and Spector,
2011; Tan et al., 2015).

Using this unique study design, we first investigated six
pairs of MZ twins that were all exposed to stress but
were discordant for PTSD. Genome-wide analyses of DNA
methylation differences across the twins identified 7 CpG loci
that were significantly associated with PTSD even after stringent
Bonferroni correction for multiple testing. The top CpG was
in an intergenic region on chromosome 2, located near gene
IL37. This gene has not been directly implicated in PTSD and
is an anti-inflammatory cytokine that has been found to be
increased in the amygdala and dorsolateral prefrontal cortex
of children with autism spectrum disorder (Tsilioni et al.,
2019). The cg26433527 site is upstream of the CSF1 gene,
a cytokine that controls the production, differentiation, and
function of macrophages.

Other genome-wide significant genes included WNT3,
ADNP2, SLFN11 and HTT. WNT3 has been associated with
stress-induced depression-like behaviors (Zhou et al., 2016) while
ADNP2 has been suggested to cause changes in cellular viability
under oxidative stress (Kushnir et al., 2008). SLFN11 acts as
a global regulator of chromatin structure with the potential to
engage the innate immune activation in response to replicative
stress (Murai et al., 2020). The HTT is the Huntingtin gene
involved in Huntington’s disease, a neurodegenerative disorder
characterized by loss of striatal neurons. This is in line with
our previous finding of an involvement of DOCK2 in PTSD,
a gene which has also been implicated in the formation of
amyloid plaques in the brain in Alzheimer’s disease (Mehta et al.,
2017), suggesting the role of genes common to both PTSD and
neurodegenerative disorders.

When assessing 45 candidate genes known to be involved in
PTSD through other studies, we found that DNA methylation
of these genes were significantly more likely to be associated
with PTSD in the current study than expected by random
chance. Of the PTSD candidate genes, we found 11 genes
were also associated with PTSD in the current twin study after
gene-wise Bonferroni correction (see Table 2). The candidate
genes included DOCK2, SLC6A3, DICER1, DRD2, ADCYAP1,
ADCYAP1R1, SKA2, OXTR, STMN1, SLC6A4, DBH, ZNF626,
TRAIP, TSNAIRE1, and IMMP2L. Our team has previously found
DOCK2, an amyloid-plaque associated gene in Alzheimer’s, to be
associated with PTSD in an epigenome-wide study in Australian
veterans (Mehta et al., 2017) and here have validated this
gene in the MZ PTSD twins. Another PTSD candidate gene
SLC6A3 encodes the dopamine transporter, individuals with
PTSD carrying the SLC6A3 9-repeat allele were found to be at
higher risk for PTSD when also having higher methylation in the
SLC6A3 promoter locus (Chang et al., 2012). SLC6A4 encodes the
serotonin transporter. A study reported increased methylation of
SLC6A4 in bullied twins at age 10 compared to their non-bullied
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FIGURE 5 | Boxplots of overlapping genes: box plots of PTSD associated genes overlapping in migraine. The mean DNA methylation is higher in PTSD than in
controls for all the overlapping genes in migraine except for SPOPL and C1orf187.

TABLE 5 | Biological pathways overrepresented among genes associated among genes associated with PTSD (only) and genes associated with both
PTSD and migraine.

PTSD Migraine overlap

Pathway Number of genes Enrichment ratio P-value FDR Genes within pathway

AMPK signaling pathway 5 9.7252 1.40E-04 0.0433 AKT3; CREB5; IRS1; MLYCD; TSC2

Longevity regulating pathway 4 10.4901 5.25E-04 0.0811 AKT3; CREB5; IRS1; TSC2

PTSD only

Vascular smooth muscle contraction 17 3.4978 5.86E-06 0.0017 ACTA2; ADCY2; ADCY9; ARHGEF12; CACNA1C; CACNA1S;
CALD1; GNA13; KCNMA1; MRVI1; MYH11; MYL6B; MYLK2;
MYLK3; NPR2; PLA2G6; PPP1R12A

Axon guidance 19 2.7030 7.05E-05 0.0107 ABL1; ABLIM2; ARHGEF12; CAMK2B; CXCL12; EFNA5; ENAH;
EPHA4; EPHA5; NGEF; NTN1; PAK6; PARD3; PLCG1; PLCG2;
PPP3CB; PRKCZ; ROBO2; TRPC1

Oxytocin signaling pathway 17 2.7844 1.18E-04 0.0119 ADCY2; ADCY9; CACNA1C; CACNA1S; CACNB2; CAMK1D;
CAMK2B; KCNJ5; CACNA2D3; MAP2K5; MYL6B; MYLK2;
MYLK3; NPR2; PPP1R12A; PPP3CB; RYR3

Leukocyte transendothelial migration 13 2.8897 5.18E-04 0.0396 ACTN1; CLDN1; CTNNA1; CTNNA2; CTNND1; CXCL12; JAM2;
MYL12B; PLCG1; PLCG2; RAPGEF4; SIPA1; THY1

Phospholipase D signaling pathway 15 2.5578 7.34E-04 0.0449 ADCY2; ADCY9; AGPAT1; AGPAT3; AGPAT4; ARF1; DGKH;
GNA13; PDGFC; PLCG1; PLCG2; RALB; RAPGEF4; SHC1; TSC2

monozygotic twins (Ouellet-Morin et al., 2013). In genome wide
studies, reduced SLC6A4 methylation levels were associated
with more traumatic events and increased risk for PTSD in
individuals carrying a specific SLC6A4 risk allele genotype

while higher SLC6A4 methylation appeared protective against
the development of PTSD (Koenen et al., 2011). The contrary
results of SLC6A4 are likely driven by a gene-by-environment
interaction whereby the particular genotype interacts with
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environment (trauma) to induce DNA methylation changes
and confer susceptibility towards PTSD. Other stress-related
candidate genes include SKA2 and ADCYAP1R1; a study showed
associations between the methylation status, a polymorphic
site in the 3′UTR of the SKA2 gene—involved in mitosis—
with reduced thickness of several cortical areas and symptom
severity in PTSD (Daskalakis and Yehuda, 2014). Methylation
in peripheral blood samples of ADCYAP1 (PACAP protein)
and its receptor ADCYAP1R1 (PAC1 protein), genes involved in
regulating the cellular stress response, were associated with PTSD
diagnosis and symptom severity, specifically in females (Ressler
et al., 2011). There is emerging evidence of a link between PACAP
and migraine, with clinical trials targeting PACAP as a likely
prevention for migraine (Sundrum and Walker, 2018; Rustichelli
et al., 2020).

Posttraumatic stress disorder and chronic pain conditions
often occur together, and the underlying mechanisms are
diverse and multifactorial (Smitherman et al., 2009; Minen
et al., 2016; Gasperi et al., 2021). To investigate genes involved
in both PTSD and migraine, we compared genes associated
with PTSD in the current study and tested whether the same
genes were also associated with migraine in an independent
sample of 15 MZ twins discordant for migraine. We identified
DAPK2 and TM6SF2 as two of the top overlapping genes
between the two disorders. DAPK2 is a calmodulin-regulated
protein kinase, it has been implicated in the intracellular
degradation process essential for adaptation to metabolic stress
(autophagy) (Shiloh et al., 2018). TM6SF2 is associated with
cardiovascular disease and plays a role in oxidative stress
(Taliento et al., 2019). These findings suggest that epigenetic
changes in response to different types of stress may “mediate”
stress phenotypes. Stress is a possible underlying cause of both
PTSD and migraine and can impact the epigenome (Fuchikami
et al., 2009; Schouten et al., 2013; Chakravarty et al., 2014;
Kenworthy et al., 2014) and damage the brain in severe cases
(McEwen, 2006, 2013). For instance, a single immobilization
stress alters hippocampal brain-derived neurotrophic factor
(BDNF) gene expression and histone acetylation at BDNF gene
promoters (Fuchikami et al., 2009). BDNF is involved in the
neural plasticity underlying the extinction of fear (Chhatwal
et al., 2006; Heldt et al., 2007; Soliman et al., 2010) and
recovery from stress. The BDNF gene has been studied in
relation to anxiety disorders such as PTSD (Ressler et al.,
2011; Andero and Ressler, 2012). Increased methylation of
a CpG site in BDNF and peripheral blood of adults with
PTSD have been reported (Smith et al., 2011). Studies have
shown that BDNF is increased during migraine attacks, and
in cluster headache (Fischer et al., 2012), and there is some
genetic evidence suggesting a role of BDNF in migraine
(Sutherland et al., 2014).

Another well-studied PTSD candidate is Catechol-O-
methyltransferase (COMT), which encodes enzymes that
degrade neurotransmitters such as dopamine and the serotonin
transporter SERT. Increased COMT promoter methylation
was associated with impaired fear inhibition in individuals with
PTSD carrying the COMT met/met genotype (Meyer-Lindenberg
and Weinberger, 2006). Polymorphisms in the BDNF, COMT,

and SERT lead to disturbances in the normal brain pathway
neurotransmitters making patients more susceptible to several
neuropsychiatric disorders (Andersen and Skorpen, 2009;
Fischer and Jan, 2020). Interestingly, COMT has been associated
with headache medication overuse (Fischer and Jan, 2020).
These studies further supporting the involvement of similar
stress-related genes in the pathophysiology of both PTSD
and migraine. Other proposed neurobiological mechanisms
underlying PTSD-migraine comorbidity includes dysfunction of
the autonomic nervous system, Hypothalamic Pituitary Adrenal
(HPA) axis and brain serotonergic dysfunction (Smitherman
et al., 2009; Minen et al., 2016).

When assessing biological pathways implicated in genes
associated with PTSD and migraine, we found that several
different pathways were involved in genes implicated in PTSD
only versus those implicated in PTSD and migraine. For instance,
vascular smooth muscle, axon guidance and oxytocin signaling
pathways were overrepresented for genes associated with PTSD;
all these are plausible and well-known pathways for PTSD.
Interestingly, migraine GWAS studies have also identified an
abundance of vascular genes associated with migraine (Mason
and Russo, 2018; van den Maagdenberg et al., 2019; Guo
et al., 2020). For genes associated with both migraine and
PTSD, AMPK signaling and longevity regulating pathways were
overrepresented. Adenosine monophosphate-activated protein
kinase (AMPK) pathway activation might be a therapeutic target
for PTSD (Wang et al., 2017) and AMPK activators might also
be effective for treatment of chronic pain disorders by inhibiting
signaling pathways that promote changes in the function of
peripheral nociceptive neurons (Asiedu et al., 2016). There
is not much known about the role of longevity pathways in
PTSD or migraine.

Epigenetic regulation of gene expression is a dynamic and
reversible process and therefore a good pathway target with
drugs (Eising et al., 2013). In our study we used the Drug
Gene Interaction Database (DGIdb) for all genes associated
with PTSD to check if they were known to be affected by
a known drug (clinically actionable) or are genes or encode
gene products that are known or predicted to be targets for
new drugs (i.e., a druggable genome). Of genes significantly
associated with PTSD at 10% FDR, we found that 7.4% of
these genes were known and clinically actionable targets for
drugs while a further 22% of genes had a druggable genome.
It has been suggested that defining the exact nature of this
association and the pathophysiological mechanisms underlying
the comorbidity are relevant in clinical practice as it might
influence both the response to treatment and likelihood to
achieve remission (Dresler et al., 2019; Seng and Seng, 2016).
Current acute and prophylactic treatments are effective in less
than half of the patients (Goadsby et al., 2002), indicating
the need for more effective drugs. There are currently no
epigenetic drugs that have gone into clinical trials for the
treatment of neuropsychiatric disorders or migraine with the
exception of valproate (Peedicayil and Kumar, 2012; Eising et al.,
2013). Identifying factors that predispose to migraine attacks
is therefore crucial to provide specific molecular targets to
design novel migraine drugs. Understanding which genes are
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involved in co-morbid disorders such as PTSD and migraine
will support the development of more advanced psychological
and/or pharmacological interventions that target key pathways
underlying both disorders.

There are several limitations of this study including small
sample size (42 samples) which has limited power to detect
small DNA methylation changes. Given the unique study
design of genetically and demographically matched samples,
this is a small yet homogenous sample to detect changes in
disease. Another limitation of the study is the use of peripheral
blood to assess DNA methylation in PTSD and migraine and
while this has been a topic for discussion for many years,
it is now evident that whole blood acts as a relevant and
easily accessible surrogate to investigate brain-disorders. We
also used an online tool by Hannon et al. to investigate the
correlation of DNA methylation in blood for the significant
genes with four brain regions (Ligthart et al., 2016). The
modest overlap in genes and pathways between PTSD and
migraine might be due to several factors including limited power
and differences across the two MZ twin samples compared.
Given the cross-sectional nature of the DNA methylation
measurements, it is difficult to disentangle cause from effect. It
is recommended that future studies should use large cohorts and
at various time points to identify biological underpinnings of
PTSD and migraine.

Nevertheless, we were able to validate and replicate several
previously reported findings from PTSD in this study and
this is the first study of its kind to use a MZ-twin design to
disentangle the genes overlapping in PTSD and migraine.
Using the disease discordant MZ twin design is a powerful
approach in EWAS as the participants are genetically
matched with similar environmental exposure and lifestyle
especially in the earlier years (Tan et al., 2015). Twin studies
provide a useful reference for hypotheses to be replicated
and validated to understand epigenetics of complex diseases
(Bell and Spector, 2011).

There are several proposed mechanisms underlying the
psychiatric comorbidities and migraine relationship, but their
exact etiology and biological mechanisms are not entirely known
(Smitherman et al., 2009; Eising et al., 2013). Although there
have been promising developments in genome-wide studies
on psychopathologies in recent years, data on the biological
basis of PTSD and migraine are limited. Few studies with
small populations have been conducted to examine genetic and
epigenetic (methylation) associations in PTSD (Uddin et al.,
2010; Mehta et al., 2018). There is need for comprehensive
evaluation and integrated model of care of psychiatric disorders
in migraine (Dresler et al., 2019). More research is required to
identify epigenetic targets that affect migraine pathophysiology
and drugs that specifically act to modulate chromatin structure
at migraine pathways (Eising et al., 2013; Minen et al.,
2016).

To the best of our knowledge, this is the first study to examine
overlapping genes and biological processes in PTSD and migraine
comorbidity using the monozygotic co-twin design. These results
are important and suggest that common genes and pathways
might be associated with PTSD and migraine, with implications

for diagnosis of comorbidities in PTSD and common treatments
for these co-morbid disorders.
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